

Surface Normals in the Wild

Weifeng Chen¹, Donglai Xiang², Jia Deng¹ ¹University of Michigan, Ann Arbor, USA ²Tsinghua University, Beijing, China

Introduction

Contribution

- A new dataset of surface normals for images in the wild.
- Two distinct approaches of using surface normals + relative depth to train a depth-prediction network.

Background

Relative depth: Which is closer? point A or point B? We can train depth-prediction networks with relative depth.

Why do we need surface normals?

- **Relative depths** introduce ambiguities:
- Not affected by Bending/wiggling/tilting (Figure 1). Can't capture continuity, surface orientation, and

Surface normal encodes orientation of surface and the derivative of depth --> eliminates ambiguities

Figure 1. Bending, wiggling, or tilting does not change relative depth of point A and B.

The Surface Normals in the Wild (SNOW) Dataset

About the Dataset

- An image dataset that consists of 60,061 diverse images
- Each image comes with one randomly sampled point and its <u>surface normal annotation</u>.

Figure 2. Examples of surface normal annotations from the SNOW dataset. The green grid denotes the tangent plane, and the red arrow denotes the surface normal.

Random Images from Flickr

Figure 3. The data collection pipeline.

Quality of human annotated surface normals

We test on 113 samples from the NYU Depth dataset, and evaluate these metrics:

- Human-Human Disagreement (HHD): difference between a human annotation and the mean of multiple human **Table 1**. Annotation errors on NYU Depth Dataset. annotations.
- Human-Kinect Disagreement (HKD): the average angular difference between a human annotation and the Kinect ground truth.

Source of error

- Holes in the Kinect raw depth map. (Figure 4)
- Imperfect normal computed from Kinect depth.

Code & Data are Available!

Result (Table 1)

Human annotations of surface normals are of high quality.

Figure 4. One example of Kinect error.

Annotation UI

7.17°

w/- Kinect error

w/o Kinect error

32.8°

15.64°

http://www-personal.umich.edu/~wfchen/surface-normals-in-the-wild/

Learning with Surface Normals

A training image I and its K queries $R = \{(i_k, j_k, r_k)\}, k = 1, ..., K$, and L surface normal annotations $S = \{ p_l, n_l \}, l = 1, ..., L$

- i_k , j_k : the location of the 2 points in the k-th query,
- $r_k \in \{+1, -1, 0\}$: ground-truth depth relation between i_k and j_k -- closer (+1), further (-1), equal
- z_{ik} , z_{ik} : the depths at location i_k and j_k .
- p_l , n_l : the location of the l-th annotation and the groundtruth surface normal at p_l .

Overall Loss function

Encourage the predicted depth to be consistent with both the ground truth relative depth and the ground truth surface normals:

$$L(R, S, z) = \frac{1}{K} \sum_{k=1}^{K} \psi(i_k, j_k, r_k, z) + \lambda \frac{1}{L} \sum_{l=1}^{L} \phi (p_l, n_l, z)$$
Relative depth loss Surface normal loss

Angle-based surface normal loss

The difference in orientation: θ

Depth-based surface normal loss

Near Perpendicular Case

- z_{p_l} : the predicted depth at location p_l
- \hat{z}_{ni} : be "should-be" depth at location p_l generated by the predicted depth on Top/Bottom/Left/Right of p_l .

Figure 5. Two 3D planes (solid line). The predicted planes (dotted lines) both deviate by θ from the ground-truth, but incur drastically different metric depth errors $\Delta 1$ and $\Delta 2$.

Near Parallel Case

Experiments

A. Experiments on NYU Depth & KITTI

Experimental Setup:

We compare these 3 models on the NYU and KITTI:

- d: model trained with relative depth
- **d_n_al**: relative depth + surface normal using angle-based loss
- *d n dl:* relative depth + surface normal using depth-based loss

Normal Error Evaluation Metric:

- Mean & median of angular difference with the ground-truth
- Percentages of predicted samples who are within t degrees of the ground-truth.

Surface normals are generated **from the predicted depth.**

Depth Error Evaluation Metric:

- WKDR: the overall disagreement rate between the predicted ordinal relations and ground-truth ordinal relations.
- **WKDR** : WKDR on pairs whose ground-truth relations are = .
- \mathbf{WKDR}^{\neq} : WKDR on pairs whose ground-truth relations are < or >. RMSE, log RMSE, etc: Normalized to have the
- same mean and standard deviation as those of the mean depth map of the training set. • LS_RMSE: least squared differences under a

global scaling and translation of the depth values:

$$LS_RMSE(z,z^*) = \min_{a,b} \sum_{i=1}^{n} (az_i + b - z_i^*)^2$$

$LS_RMSE(z, z^*) = \min_{a,b} \sum_{a,b} (az_i + b - z_i^*)^2$

Results (Table 2, 3, 4, 5 & 6)

- Depth-based loss: Significant improvement in metric depth. No significant improvement in ordinal depth. Improvement in surface normal estimation.
- Angle-based normal loss: Not so significant improvement in metric depth. Better ordinal depth. Outperforms all other methods on surface normal estimation.
- The two losses have a different set of tradeoffs and are appropriate in different applications.

Method	RMSE	RMSE (log)	RMSE (s.inv)	absrel	sqrrel	LS RMSE
d	1.08	0.37	0.23	0.34	0.41	0.52
d_n_al	1.09	0.38	0.24	0.34	0.42	0.55
d_n_dl	1.08	0.37	0.23	0.34	0.41	0.50
Chen_Full[1]	1.11	0.38	0.24	0.34	0.42	0.58
Eigen(V)*[2]	0.64	0.21	0.17	0.16	0.12	0.47

Table 2. Metric depth error on the NYU Depth dataset. Eigen(V)* is trained on full metric depth.

Model	Angle Distance		% Within t ^o			
	Mean	Median	11.25	22.5	30	
d	29.45	22.71	22.31	50.71	63.65	
d_n_al	25.92	20.09	26.28	56.45	69.26	
d_n_dl	30.85	24.51	24.51	46.93	60.31	
Chen_Full[1]	30.35	24.37	18.64	46.80	61.42	
Eigen(V)[2]	35.97	28.34	17.67	41.12	53.49	

Table 3. Surface normal error evaluated on the NYU Depth dataset.

RMSE RMSE RMSE absrel sqrrel (log) (s.inv) 6.86 2.06 1.92 0.38 2.77 5.66 6.75 | 1.56 | 1.45 | 0.34 | 2.45 | 5.57 d_n_al 6.17 | 0.83 | 0.76 | 0.28 | 1.88 | 4.84

Table 4. Metric depth error on the KITTI dataset.

Godard[4] 5.21 0.22 0.20 0.11 0.89 4.73

	_	_	_
Method	WKDR	WKDR=	WKDR≠
d	29.2%	32.5%	28.0%
d_n_al	27.6%	31.5%	26.6%
d_n_dl	30.9%	31.7%	31.4%
Chen_Full[1]	28.3%	30.6%	28.6%
Eigen(V)*[2]	34.0%	43.3%	29.6%

Table 5. The ordinal depth error on the NYU Depth dataset.

•			•	
Method	WKDR	WKDR=	WKDR≠	
d	26.46%	24.01%	27.08%	
d_n_al	22.35%	20.61%	22.93%	
d_n_dl	26.50%	22.58%	27.50%	
Godard[4]	25.84%	26.17%	26.21%	

Table 6. The ordinal depth error on the KITTI Depth dataset.

B. Experiments on Surface Normals in the Wild (SNOW)

	Model	Angle Distance		% Within t ^o		
		Mean	Median	11.25	22.5	30
Normals	d_n_al	32.53	27.44	15.40	40.52	54.12
From Predicted	d_n_al_SNOW	25.75	21.26	21.66	52.98	67.88
Depth	Chen_Full	35.16	30.26	13.70	36.56	49.56
	Eigen(V)[2]	48.71	46.15	6.35	18.91	28.45
Directly	Ours_NYU§	31.96	26.03	18.16	43.72	56.03
Predicted Normals	Ours_NYU_SNOW§	23.33	17.99	30.42	60.54	72.74
	Eigen(V)[2] §	28.71	23.16	20.98	48.78	61.84
	Bansal[3] §	27.85	22.25	23.41	50.54	64.09

Table 7. Surface normal error evaluated on SNOW. Models with a § suffix directly predict surface normals.

- d_n_al_F_SNOW: d_n_al_F fine-tuned on SNOW. Normal from depth.
- Ours_NYU: Network trained on NYU directly predicts surface normal.
- NYU. Normal from depth. Ours_NYU_SNOW: Ours NYU fine-tuned on SNOW. Normal from depth.
 - Bansal: Baseline network trained on NYU directly predicts surface normal.

Eigen/Chen_Full: Baselines trained on

Experimental Setup: Results (Table 7)

Train/test split: 49,805 training, 10,256 test. • d n_al_F_SNOW and d_n_al_F_SNOW§ achieve the best result.

Figure 6. Qualitative results on SNOW produced by our model and Bansal

References

- [1] Chen, Weifeng, et al. "Single-image depth perception in the wild." In NIPS. 2016.
- [2] Eigen et al. "Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture." In ICCV. 2015.
- [3] Bansal et al.. "Marr revisited: 2d-3d alignment via surface normal prediction." In CVPR. 2016. [4] Godard et al. "Unsupervised monocular depth estimation with left-right consistency." arXiv preprint
- arXiv:1609.03677 (2016).