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Introduction Learning with Surface Normals

A training image / and its K queries R = { ( iy, jr, )}, k = 1, ..., K, and L surface normal annotations

RGB-D Data Relative Depth Annotations Surface Normal Annotations S={ppn}l=1,..,L . . _ . ,‘
' * i, Jji: the location of the 2 points in the k-th query, The difference in orientation: 0 normal 4
* 1 € {+1,—1,0}: ground-truth depth relation between iy and j; -- closer (+1), further (-1), equal :

4 (0).
% * Zik, Zjk - the depths at location i and ji.
Vo o * p;, n;: the location of the [-th annotation and the groundtruth surface normal at p;.
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/ Overall Loss function

Encourage the predicted depth to be consistent with both the ground truth relative depth and the

Angle-based surface normal loss

L
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Depth-based surface normal loss oredictod ‘:: Predicted

ground truth surface normals: -
> . K 1 L Idea: compute the “should-be” depth value of a Gfound-trglm%‘_{e\;
L(R,S, z) = _2 (i, i, T, Z) + A_Z b (v, 1y, 2) neighbor using the ground truth normal, and penalize A2 L -~ ;‘
) ) K ) ) ) L ) ) . . . . 3 ' "I
Deep Network with _ = | = its difference with the predicted depth. |
Input Image . : _— Metric Depth Y \ ’ ' 2 2
Pixel-wise Prediction Relative depth loss  Surface normal loss d(p,ny,z) = (z“ Z ) / (2 +z ) Depth 8 .
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* A dataset of surf Is for i in the wild L&{T,B,L,R} ,Axs 5 | ;o /

new dataset of surface normals for images in the wild. | o + 2, the predicted depth at location p, mage Plane ! ; 1 ,
* Two distinct approaches of using surface normals + relative depth to train a depth-prediction network. - . . y _ Near Perpendicular Case Near Parallel Case
- © 2y be “should-be” depth at location p; generated by

Derived normal [ ] the predicted depth on Top/Bottom/Left/Right of p;. Figure 5. Two 3P planes (solid.line). The predicted
planes (dotted lines) both deviate by 8 from the

ground-truth, but incur drastically different metric
""" Predicted depth depth errors A1 and A2.
Ground truth normal

Background A
Relative depth: Which is closer? point A or point B?

We can train depth-prediction networks with relative depth.

Why do we need surface normals?

Relative depths introduce ambiguities: oopin seng VB Wiggle N B Ti B
* Not affected by Bending/wiggling/tilting (Figure 1). XY Plane Expe rl ments
e Can’t capture continuity, surface orientation, and Figure 1. Bending, wiggling, or tilting does not
curvature. change relative depth of point A and B. . Debth Error Evaluation Metric: . . .
Surface normal encodes orientation of surface and the A. Experiments on NYU Depth & KITTI b - B. Experiments on Surface Normals in the Wild (SNOW)
. . L . « WKDR: the overall disagreement rate between
derivative of depth --> eliminates ambiguities Experimental Setup: the predicted ordinal relations and eround-truth
i} . —
We compare these 3 models on the NYU and KITTI: ordi:al elations & Model Angle Distance % Within t
The Surface Normals in the Wild (SNOW) Dataset | s . WKDA"  WKDR on pairs whese grundnsh wen__weden | uiss ;s
e u ace Orma S In e I ( ) a ase ° d_n_al: relative depth + surface normal using angle_based loss relations 'are - P 8 Normals d n_al 32.53 27.44 15.40 40.52 54.12
e d_n_dl: relative depth + surface normal using depth-based loss - R . From d_n_al_SNOW 25.75 21.26 21.66 52.98 67.88
About the Dataset  WKDR : WKDR on pairs whose ground-truth Predicted
. | | | relations are < or > Depth Chen_Full 35.16 30.26 13.70 36.56 49.56
e An mage dataset tha.t consists of 60,061 diverse npages | . Normal Error Evaluation Metric: . RMSE, log RMSE, etc: Normalized to have the Eigen(V)[2] 4871 46.15 6.35 18.91 28 45
e Each image comes with one randomly sampled point and its surface normal annotation. * Mean & median of angular difference with the ground-truth ’ ’ ' . .
. e same mean and standard deviation as those of Directly Ours_NYU$§ 31.96 26.03 18.16 43.72 >6.03
* Percentages of predicted samples who are within t degrees of . Predicted
the ground-truth the mean depth map of the training set. Normals | OUrs_NYU_SNOWS 23.33 17.99 30.42 60.54 72.74
Surface normals are generated from the predicted depth. ) LS-RMSE:, least squarec! Gifferences Sunder a Eigen(V)[2] § 28.71 23.16 20.98 48.78 61.84
global scaling and translation of the depth values:
L F ! Bansal[3]§ 27.85 22.25 23.41 50.54 64.09
N\ v LS_RMSE(z,z*) = minZ(azi + b — z])?
7 7k X b & Table 7. Surface normal error evaluated on SNOW. Models with a § suffix
\ 4 : Results (Table2,3,4.,5 & 6) directly predict surface normals.
Figure 2. Examples of surface normal annotations from the SNOW dataset. The green * Depth-based loss: Significant improvement in metric depth. No significant improvement in ordinal depth.
grid denotes the tangent plane, and the red arrow denotes the surface normal. Improvement in surface normal estimation. . | | * d_n_al F.SNOW: d n_al_Ffine-tuned on * Elgen/Chen_Full: Baselines trained on
_ - * Angle-based normal loss: Not so significant improvement in metric depth. Better ordinal depth. Outperforms all SNOW. Normal from depth. NYU. Normal from depth.
T o other methods on surface normal estimation. * Qurs NYU: Network trained on NYU e Ours NYU SNOW: Ours_NYU fine-tuned on
RsmlZ o — * The two losses have a different set of tradeoffs and are appropriate in different applications. directly predicts surface normal. SNOW. Normal from depth.

L ol s - " — * Bansal: Baseline network trained on NYU
,\( g« -. . @ il Method | RMSE | RMSE | RMSE | absrel | sqrrel | LS Method | RMSE | RMSE | RMSE | absrel | sgrrel | LS directly predicts surface normal.
.h - .E:Ei Ho:zc::al:r?;e (Iog) (San) RMSE (|Og) (San) RMSE Experimental SEtup: RESUItS (Table 7)

7 N i 77 = . d 1.08 | 037 | 0.23 | 0.34 | 0.41 | 0.52 d 6.86 | 2.06 | 1.92 | 0.38 | 2.77 | 5.66 Train/test split: 49,805 training, 10,256 test. ¢ d_n_al F SNOW and d_n_al F SNOWS$§
et e 4 »\ o B b annot Tell :
E“ o b u e d_n_al 1.09 | 038 | 0.24 | 034 | 0.42 | 055 dnal |675|156| 145 | 034 | 2.45 | 5.57 achieve the best result.
Random |mages from Flickr Annotation Ul d_n_di 1.08 | 0.37 | 0.23 | 0.34 | 0.41 | 0.50 d n_dl 6.17 | 0.83 | 0.76 | 0.28 | 1.88 | 4.84
. Ei V)*[2 0.64 | 0.21 | 0.17 0.16 0.12 | 0.47 i

Quality of human annotated surface normals s o igen(V)*[2] Table 4. Metric depth error on the KITTI dataset.
We test on 113 samples from the NYU Depth dataset, and w/- Kinect error 7.4° 32.8° Table 2. Metric depth error on the NYU Depth Method | WKDR |WKDR= |WKDR#
evaluate these metrics: _ ) . dataset. Eigen(V)* is trained on full metric depth. d 29.2% | 32.5% | 28.0%
e Human-Human Di§agreement (HHD): differenFe between w/o Kinect error 7.17 15.64 d n_al 276% | 315% | 26.6%

d hu;ni.n annotation and the mean of multiple human Table 1. Annotation errors on NYU Depth Dataset. Model Angle Distance % Within t° d_n_dI 30.9% 31.7% 31.4%

nn ns.
annotations Mean Median | 11.25 225 30 chen Fulll1] | 283% | 306% | 28.6%

* Human-Kinect Disagreement (HKD): the average angular

: : : d 29.45 22.71 | 22.31 | 50.71 | 63.65 Figen(V)*[2] | 34.0% | 43.3% | 29.6% - | Normal Colors
difference between a human annotation and the Kinect
d n al 2592  20.09 26.28 56.45 69.26 _ —— d _n_al F_ SNOW Bansal d n al F SNOW Bansal
ground truth. - - Table 5. The ordinal depth error on the NYU Depth dataset.
Source of error d_n_dl 30.85 24.51 | 2451 | 4693 | 6031 Figure 6. Qualitative results on SNOW produced by our model and Bansal

Chen_Full[1] | 30.35 2437 | 18.64 | 46.80 | 61.42 Method | WKDR | WKDR=_ [WKDR#
Eigen(V)[2] | 35.97 28.34 17.67 41.12 53.49 ° > ° e e re n CeS
d_n_al 22.35% | 20.61% | 22.93% [1] Chen, Weifeng, et al. "Single-image depth perception in the wild." In NIPS. 2016.

Result (Table 1). . . , Table 3. Surf | luated the NYU d n dl 26.50% | 22.58% | 27.50% [2] Eigen et al. "Predicting depth, surface normals and semantic labels with a common multi-scale convolutional
Human annotations of surface normals are of high quality. Figure 4. One example of Kinect error. ablé 5. surtace normal error evaluated on the - - architecture.” In ICCV. 2015.

. Depth dataset. Godard[4] | 25.84% | 26.17% | 26.21% [3] Bansal et al.. "Marr revisited: 2d-3d alignment via surface normal prediction." In CVPR. 2016.
Code & Data are Available! | http://www-personal.umich.edu/~wfchen/surface-normals-in-the-wild/ . [4] Godard et al. "Unsupervised monocular depth estimation with left-right consistency." arXiv preprint
Table 6. The ordinal depth error on the KITTI Depth dataset. arXiv:1609.03677 (2016).

* Holes in the Kinect raw depth map. (Figure 4)
* Imperfect normal computed from Kinect depth.




